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This report is a reformatted and greatly amplified version of a talk presented at the San
Juan Volcanic Field Symposium, Rocky Mountain Geological Society of America Sectional
Meeting, Boulder, Colorado, May, 1987 (Landis and Rye, 1987). Because the talk was
presented as one of a series on epithermal mineralization at Creede, some references in this
report to other talks in the series or to district geological features may be unfamiliar to the
reader. For background, the reader is referred to Hayba et al. (1985), Barton et al. (1977)
and to Open-File reports of the symposium talks (Bethke, 1988, Plumlee et al., 1988, Rye
et al. 1988) as well as to abstracts of the other talks ( Foley et al., 1987, Hayba 1987,
Barton, 1987).

ABSTRACT

The gas chemistry (H20, CO2, H2S, SO2, Ar, N2, CHy, and various organic species)
of the Creede hydrothermal fluids was determined from inclusion fluids in samples
representative of the time space features of the hydrothermal system as indicated by
previous stable isotope studies of the fluids and host minerals. In addition, gas chemistry
studies were made on samples that have been the subject of detailed fluid inclusion
temperature and salinity studies. The gas chemistry of the Creede hydrothermal system
was highly variable in time and space. The gas compositions are significant indicators of
the sources and evolution of fluids in the veins and at depth. Each major stage of
mineralization is characterized by a specific gas chemistry which may have been modified
locally by mixing and/or boiling. The gas compositions of fluids derived from the
highlands in the northern part of the district are distinct from fluids derived from the
sediments in the moat of the Creede caldera in the south. Fluids from all paragenetic
stages, including those from the high-T (up to 310°C) and high fO2 (hematite stable) main
stages, contain a complex (and as yet poorly-characterized) mixture of alkanes, alkenes,
and aromatic hydrocarbons. These hydrocarbons must have been derived from progressive
thermal degradation or pyrolysis of moat sediment organic matter in the southern part of the
district and from a hidden source of saturated hydrocarbons in the northern part of the
district. The presence of significant quantities of SO in some of the fluids suggests the
formation of metastable thiosulfate during mixing of the hydrothermal fluids with low pH
fluids in the overlying groundwater. The persistence of the organic species and
disequilibrium gas compositions in the fluids both indicate lack of attainment of complete
chemical equilibrium in the system consistent with interpretations based on the chemical
and sulfur isotope composition of ore minerals.

To obtain these gas chemistry data, samples were heated in a vacuum furnace with a
programmed temperature rise. Computerized, real-time multiple ion monitoring on the
gases released was performed by quadrupole mass spectrometer. Thermal gas release
profiles define discrete populations of fluid inclusions that can be distinguished from
adsorbed/desorbed gas release, the thermal decomposition of host minerals and occult solid
inclusions, and "matrix gas" released from submicron-sized fluid inclusions, domain
boundaries, micro-structures, crystal defects, and gas dissolved in the crystal. Possible
gas reactions and pyrolysis during decrepitation are evident from product and reactant
profiles. Superimposed upon the thermal profiles are sharply-defined spikes that represent
sudden release of gas from single or multiple fluid inclusions. Quantitative analysis of
these "bursts" permits detailed study of ore fluid chemistry at the level of individual fluid
inclusions. Gas partial pressures were determined from the mass spectrometer data with
gas-specific correction factors that include the ion sensitivity and fragmentation, kinetic
rates of adsorption/desorption on vacuum surfaces and differential vacuum pumping.

INTRODUCTION
Gases exist in hydrothermal fluids both as solutes and as a separate phase. They occur
in ore and gangue minerals both in substitution in crystal structures and trapped in fluid



inclusions. They also are absorbed on crystal surfaces. The most direct method of
determining their abundances in hydrothermal fluids is by analyses of inclusion fluids.

Gas abundance data help to indicate sources, prevailing fluid/rock processes, and
environmental (physical-chemical) conditions of hydrothermal systems. As such, gas data
provide overlapping and complimentary information to that obtained from stable isotope
and fluid inclusion temperature and salinity studies and from the interpretation of mineral
assemblages. The purpose of this presentation is twofold: (1) to clarify sources and
processes in the Creede system; (2) to demonstrate that gas chemistry data, when combined
with well documented fluid inclusion and stable isotope data, provide an exceptionally
powerful tool to study processes in any hydrothermal system.

This is a reconnaissance study of the Creede hydrothermal system. Subsequent studies
will provide much closer paragenetic constraints and will be more closely tied to individual
fluid inclusion type, paragenesis, temperature, salinity, and stable isotope measurements.
However, by taking advantage of the exceptional geochemical framework developed in
various studies on Creede we have been able to choose samples to characterize the basic
gas geochemistry of the hydrothermal system. In this study we have 1) obtained
quantitative gas composition data from individual fluid inclusions in samples previously
characterized by petrographic, micro-thermometric, and related stable isotope studies, 2)
demonstrated that each of the several major fluids in the Creede system has distinctive gas
chemistry, 3) demonstrated that the mixing of these fluids and their chemical evolution by
fluid-rock reactions, and phase separation and condensation can be recognized and studied
by gas chemistry data, 4) documented aqueous sulfur species metastability and probable
thiosulfate formation in the hydrothermal system as indicated by disequilibrium amounts of
sulfur dioxide gas that correlate with the hydrologic structure of the hydrothermal system,
and 5) traced the origin and evolution of light chain and aromatic hydrocarbons in the
system.

ANALYTICAL PRINCIPLES AND METHODS

FIGURE 1:  Schematic diagram of a quadrupole mass spectrometer
Basically, the quadrupole mass spectrometer (QMS) is comprised of four rods, or

poles, a gas ionization source region at one end of the rods, and a ion detection system
(secondary electron multiplier) at the other end. Quadrupole mass spectrometers do not
require a massive magnet to generate magnetic fluxes, but rather use simple rf waveforms
on the rods to create mass dispersion and spectral analysis. This QMS system is preferable
in gas analyses because it is capable of scans as fast as 100 microseconds/atomic mass unit
(AMU) and is extremely sensitive with lower limit for routine analyses of individual gas
species in the 10 Pgm range (10 ppb range with special tuning) and AMU detection limits
as low as 8 x 10-1- mbar (2X background). An extremely stable instrument capable of
maintaining 1/64th AMU mass resolution over a 24 hour period, it has a linear mass scale
output of mass resolution adequate for gas speciation and quantitative analysis (unit
resolution to approximately 200 AMU).

FIGURE 2:  Schematic Block Diagram of Fluid Inclusion Gas Analysis System

The diagram illustrates the essential components of the fluid inclusion gas analysis
system. The main QMS is pumped by a turbomolecular pump and backup ion pump with a
safety interlock gate valve. A secondary QMS is positioned with an intervening liquid Np
cryrotrap to simultaneously monitor non-condensable gas species. Leak valves on the inlet
permit precise control on sample (or reference gas) conductance to the QMS ion source.
Furnaces, cryogenic traps for gas separation, vacuum gauges, and auxiliary turbomolecular
vacuum pumping enable bulk and thermal profile gas analysis. The dual inlet design
enables both sample gas mixtures and prepared reference gases to be compared.

The system has two thermal profile furnaces (affectionately called "hotdog" furnaces)
with a small quartz capsule containing fluid inclusion material. It is important to



understand that gas from the host mineral is generated by heating the sample at a uniform
rate of about 10°C/min to cause decrepitation of the contained fluid inclusions. All sample
gases are pumped through the ion source and continuously monitored by the computer-
driven QMS. The gases from individual fluid inclusions are detected using high speed real-
time data collection. Fluid inclusion gases are distinguished from gases due to the rise in
background with heating, from thermal decomposition of host minerals, and from
pyrolysis of generated gases. Although heating opens all types of inclusions during the
thermal ramps secondary and primary inclusion populations can often be differentiated by
their bursting temperatures and compositions.

FIGURE 3:  Thermal Profile of Gas Release -- OH Vein Sphalerite -- Monitoring H2S

The actual graphics screen display from the computer is shown in this figure, in which,
the variation in intensity of the mass 34 ion (H,S gas primary peak) and mass 17 ion (OH
peak for water) is plotted through temperature during the thermal ramp of a sample of
sphalerite. This sample was prepared from polished plates which contained four fluid
inclusions that had been measured previously for filling and freezing temperatures. Since
the temperature of the furnace is ramped at constant rate, the abscissa can be time,
temperature, or successive equally spaced measurement cycle data points. The rapid
increase in intensity represents the release of fluid inclusion-contained hydrogen sulfide gas
which the QMS "sees" as mass 34. In this example the four fluid inclusions were opened,
each with its own "burst" release profile spike. In general, a burst event can represent
either the opening of a single fluid inclusion or of a very small number of neighboring fluid
inclusions opened by the same decrepitation crack. Note that the intensity is plotted in log
units, and that an individual fluid inclusion burst typically takes 10-100 milliseconds to
reach maximum peak intensity before decaying due to dynamic pumping. Quantitative
information comes from attributing the net increase in intensity of the peak (above the
immediately preceding background intensity) to the gas released from the "burst event".
Peak intensities of interest are tracked in real-time and the data stored on disk. Typically 8-
10 MBytes of data are acquired during an analysis. Graphic manipulation to produce plots
like those in this figure and matrix calculations to obtain quantitative data are completed
later.

Because H2O is a polar molecule and behaves 'sticky' in a vacuum system, its
pumpdown recovery after each fluid inclusion burst is spread out over a longer time period
than that for hydrogen sulfide. The pumpdown profile illustrates the theoretically predicted
log-linear recovery immediately after a burst event. Eventually kinetically controlled
surface desorption gas release modifies the linear portion of the curve. As H2O is the gas
most prone to adsorption in a vacuum system, it exhibits the slowest pumpdown recovery.
As it normally is the predominant gas, HyO can cause problems of detection of other gases
and sometimes must be removed cryogenically during the analysis. A net intensity vector
(height of peak above the local background) for all peaks monitored by the QMS is the final
analytical result. The kinetics of burst pumpdown recovery introduces an uncertainty in
determining the area under the peak, therefore maximum peak intensity data are used
instead of integrated peak area. Very rapid data collection is necessary in order to clearly
define the maximum of the burst peak.

FIGURE 4: Matrix Calculation

The data are reduced to quantitative gas analyses by means of matrix algebra. The
analytical result is a net intensity vector representing the intensity for each mass in the
spectrum from the gas mixture released from the decrepitated fluid inclusion. The QMS is
calibrated with reference gases to previously establish the ion fragmentation patterns of the
gases of interest and the ionization efficiency of each gas relative to nitrogen. These data
form the calibration matrix and sensitivity vector multiplier. The partial pressures of each
gas in the mixture are determined by solving this matrix in a general form by standard least
squares methods. The precision of the analysis is about 3-5 percent of the amount
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reported, with samples as small as about 10 ppm of the total gas. The mean diameter of the
smallest fluid inclusion for which gas content can be analyzed by the present instrumental
configuration while maintaining this precision is about 10 microns. Below this size,
vacuum conductance of gases approach kinetics of sorption.

The equations show the general solution to the matrix calculation. |A| is the general
matrix of m peaks by n gas species and contains gas ion fragmentation and sensitivity data
from instrumental calibration (combined calibration matrix and sengitivity vector ). A* is
the transpose of |A|. Q is the inner (minor) product of |A| and Q-1 the inverse of Q. [P|
is a n-vector of gas species (vector of gas partial pressures) and |I| the m-vector of peak
intensities determined from the burst analysis (intensity vector). The solution for |P| is
obtained by a least squares and iterative numerical process. The gas species that comprise
[P] are chosen by the operator based upon the intensities in the AMU vector |I], and upon
general knowledge and geochemical reasonableness for suspected gas species to be
present. If the most abundant mass fragment for a given gas specie is not detected, then it
1s not present in the fluid inclusion gas mixture. Otherwise, the researcher is forced to
solve the matrix problem a number of times, searching for a geochemically reasonable set
of gases that numerically minimizes the least squares residuals to the solution. To help
judge the reasonableness of the solution derived from the selected gas species, an average
absolute residual and a residual factor for each AMU intensity are computed using the |P|
solution. An average absolute residual is the sum of absolute residuals on each AMU
divided by the number of AMU’s. An individual AMU residual is the difference between
the measured intensity at a given mass and that intensity computed by summing the
percentage contribution from each gas to the intensity, weighted by the partial pressures
(mole fractions) calculated for each gas. The accepted solution is one that best accounts for
the intensity at each AMU with a minimum residual, by selection of geochemically
reasonable gases. The average absolute residual for results are tabulated in the
Appendicies 2-6 data tables.

Another useful number, first calculated only after many analyses had been completed,
is contrast. Contrast is reported as the sum of all "burst” intensities, divided by the sum
of all immediately preceding background intensities. This parameter is reported in the
Appendicies only for more recently generated data sets. It is a measure of the overall
intensity difference between fluid inclusion gas and the "local” background immediately
prior to the "burst”. In other words, it is an approximate indication of the relative size of an
inclusion, and provides a means to compare the amount of gas released by a series of
inclusion "bursts".

The partial pressures of each gas in the mixture calculated by this method can be viewed
as mole fraction of the gas. The absolute quantity of each gas is easily determined by
assuming ideal gas behavior and calibrating the ionization source (amps/mbar). However,
in routine operation the relative measurements expressed as partial pressures or mole
fractions are sufficient.

APPLICATIONS TO CREEDE

All of the samples for inclusion gas analyses were selected on the basis of stable
isotope (Rye et al, 1988) and/or fluid inclusion (Hayba, 1985) information on the samples.
In most cases analyses were made on chips that were as near as possible to the site of the
original stable isotope analyses, or were the actual inclusions on which fluid inclusion
measurements were made. A summary of isotope and fluid inclusion data on the samples
are given in Appendix 1. The complete gas compositions of all samples are listed in the
Appendices 2-6. No attempt is made to distinguish primary, secondary, or necked
inclusions although these can often be recognized from their burst temperatures and fluid
compositions. The data are plotted as a series of ternary gas composition diagrams which
show the relative gas compositions of the fluids as normalized mole percents. HO is
plotted as 1/100 of its mole percent in order to better visualize the grouping of data. Total
organics are C2 through Cg, excluding CHy. Total sulfur is HoS+S0O;. These ternaries



are grouped in figures to show: 1) the different ternary gas compositions shown by groups
of samples previously studied for stable isotoge compositions (ie., SD20-8180m20 of
inclusion fluids, 813C-3180 of carbonates, 834S-8180 of barites 2) the gas composition of
fluids from the Northern exploration area (NEA) versus those from the southern part of the
district 3) gas chemistry of a single sample of quartz from the OH vein containing primary,
pseudosecondary, and secondary inclusions and 4) various ternary gas compositions of all
samples from the district. In the following discussions, qualitative expressions about
compositions on ternary diagrams refer to variations with respect to end member
components. Thus, a sample refered to as sulfur rich need not have high absolute total
sulfur.

FIGURE 5:  Map of the Creede mining district (modified from Steven and Eaton, 1975)
This map shows the location of the major veins in the NEA and the southern district
which is bounded on the south by the moat sediments of the Creede caldera. Most samples

in this study were from the Equity, Bulldog Mountain, OH, and Amethyst veins

FIGURE 6: N-S Diagrammatic Longitudinal Section of the Creede Hydrothermal
System

This is a N-S longitudinal section through the district showing a schematic model of the
main stage Creede hydrology as presented by Bethke (1988) and Rye et al. (1988). These
references should be consulted for meaning of rock unit symbols. The section shows the
spatial relations of various fluids analyzed for gas chemistry in this study. The shaded area
that represents the upwelling plume, of high temperature hydrothermal fluids, is defined by
the 200°C isotherm. From the plume origins at depth the flow path is up and then diverted
south, eventually reaching the moat sediments of the Creede Formation. This southerly
distortion of the plume is caused by the incursion of shallow overlying groundwater
coming off the continental divide to the north. Several fluid components are recognized
and marked by large block letters. They include: [N] Northern Recharge waters, possibly
from reservoirs in the San Luis Peak caldera fill or La Garita caldera, recharged into the
northern part of the hydrothermal system; [S] Southern Recharge waters chemically and
isotopically evolved in the moat sediments of the Creede caldera and recharged at various
levels ([S], deep; [S'], shallow) into the convective system; [D] Deep waters, either of
magmatic origin or of very deep, but undefined origin, chemically equilibrated at high
temperatures with igneous rocks; [G] Shallow Ground water from northern recharge off
the continental divide and overlying the upwelling plume; [MN] Mixed Northern waters,
mixed or interfacing Northern Recharge [N] and Southern Recharge [S] waters in the
deeper parts of the upwelling plume; [MS] Mixed Southern waters, mixtures of water of
the upwelling plume with pore fluids in the moat sediments; and [MO] Mixed Overlying
waters, mixtures of water of the upwelling plume with overlying ground waters [G].
Some of these fluid components have characteristic gas chemistries as will be summarized
after presentation of data on fluids for various mineral groups in the district. Much of the
mineralization occurred in the zone of mixing between the upwelling plume and the
overlying ground waters [G] and moat sediment pore fluids [S'].

Gas chemistry of the barite fluids

FIGURE 7: 84S and 880 of barites from the Creede district

Rye et al. (1988) interpreted the 334S and 8180 data on barite to indicate that sulfare in
the Creede system was derived from three sources with the "end member compositions”
shown in Figure 7. These sources were a) sulfate from interstitial fluids of the moat
sediments without significant reduction, b) sulfate from interstitial fluids of the moat
sediments which underwent partial reduction during recharge into the intermediate levels of
the hydrothermal system and/or along the interface between the pore fluids and spent
hydrothermal fluids, and c) deep hydrothermal sulfate generated by equilibrium oxidation
of HS from magmatic or volcanics sources. (There appears to have been relarively little



sulfate from shallow oxidation of H3S at Creede.) Four representative barite samples
whose isotopic compositions fall near the end member values, and are presumed to have
been precipitated from fluids which contained "end member" sulfate compositions were
selected for fluid inclusion gas analysis and are indicated by sample numbers in the figure.

FIGURE 8:  Fluid inclusion gas chemistry in representative barites

This figure shows the gas compositions of 76 fluid inclusion from the four barites.
Although there is a significant amount of overlap the NEA barite fluids with deep sulfate
tend to have higher total sulfur (Figure 8 A), higher total organics (Figure 8 B), higher HyS
relative to SO (Figure 8 C) and higher CHy (Figure 8 D) than the barite fluids with sulfate
from moat sources. As will be shown later, the organics of the NEA fluids also have a
greater proportion of aromatic to light chain hydrocarbons (Figure 19). The relatively low
H5S content of the fluids with moat sediment-derived sulfate is not surprising because H3S
in the moat sediment pore fluids was probably formed by earlier bacterial reduction of
sulfate and precipitated as pyrite. Barite at the southern end of the district probably
precipitated in response to mixing of these sulfate rich fluid with sulfate rich hydrothermal
fluids (MS environment in Figure 6). We can not measure the sulfate content of the barite
fluids but unexpectedly, the fluids in barites with moat sediment-derived sulfatg are
relatively high in SO3. The QM% method can detect SO to approximately 10-4 molal, but
the analyses indicate 10-1 to 10-3 molal SO,.

SO3; in fluid inclusions
FIGURE 9: Temperature-Molality Plot for Aqueous SO?

The solubility (log molality) of sulfur dioxide gas in fluids buffered by the assemblage
pyrite-chlorite-hematite-Kspar-Kmica-quartz in the Creede hydrothermal system can be
predicted from this temperature-molality plot. Also shown are the temperature and salinity
fields of fluids in various vein systems from north to south in the district. The aqueous
sulfur d10x1dc predicted from the calculated fluids of Creede indicate < 10-7 molal to as
little as 10-11 molal at equilibrium. The measured fluid compositions contain many orders
of magnitude more SO;. This gas composition must be from the fluids preserved in the
inclusions. This SO; cannot be due to pyrolysis or redox reactions, as all reactants and
products are monitored during the analysis. Nor can it be derived from aqueous sulfate
during heating while decrepitating the inclusions as H2S and SOz do not co-vary during the
profile release. Most likely, the SO in the fluids is an analytical decomposition product of
some other species during heating and decrepitation of inclusion in the vacuum system
QMS. We suggest that the SO is produced by the decomposition of intermediate and
metastable sulfur species (thiosulfates, sulfite, or other polysulfides) that were ultimately
formed by of oxidation of H»S during mixing of the hydrothermal fluids with overlying
low pH groundwater.

FIGURE 10: Thermal profile for H20, SO and H3S for high and low temperature
primary fluid inclusions in sphalerite from the NJP-X locality in the OH vein

The computer graphics display thermal profiles for H)O (AMU = 17) and SO (AMU =
64), and HaS (AMU = 34) in inclusions in low (<220°C) (Q0233) and high (~285°C)
(Q0234) temperature sphalerite from the NJP-X locality in the OH vein. AMU 17 is used
instead of 18 because of the large size of the inclusions which release so much water they
cause the 18 peak to go off scale. The high temperature sample is the same as the one in
Figure 4 that shows four discrete burst spikes for individual inclusions in a sample of
sphalerite. The high temperature inclusion fluids have salinities of ~12 equivalent wt.%
NaCl. These fluids, which were largely from the upwelling plume and are the least mixed
with overlying fluids, contain both HpS and SO,. As mentioned for the previous figure the
SO; is probably related to the breakdown of thiosulfate in the fluids during decrepitation
analysis of the fluid inclusions. The low temperature inclusion fluids have salinities of 7£1
equivalent wt. % NaCl. These fluids are more mixed with overlying fluids than the higher



temperature fluids and have no SOj. These inclusion presumeably have no thiosulfate.
The stability of thiosulfate is dependant on pH, fO2, and temperature. At the onset of
mixing in the higher termperature and higher pH fluids, thiosulfate probably is more
abundant than at the lower temperature and lower pH (and probably higher fO7) fluids that
are more extensively mixed with the overlying groundwater. In the more mixed fluids the
thiosulfate is probably completely oxidized to aqueous sulfate.

Gas chemistry of NEA fluids
FIGURE 11: NEA fluid inclusion gas chemical compositions

This figure portrays various ternary gas compositions of 35 fluid inclusions from two
samples of quartz and one sample each of sphalerite, fluorite, and adularia from the NEA.
Stable isotope data (Rye et al., 1988) indicate that fluorite, adularia and quartz were
probably formed from fluids that contained a substantial component of isotopically light,
northern recharge waters, whereas sphalerite formed from isotopically heavier fluids with
origins to the south. The degree to which these northern and southern recharge fluids
actually mixed in the plume of the system has not been determined. The southern recharge
fluids traveled nearly 10 kilometers north under the district bringing components from the
Creede moat sediments. Fluids from the north and south have different stable isotope
compositions (Rye et al., 1988) and we would expect them also to have dramatically
different gas chemistries. We suspect that the NEA overlies the heat source which drove
the hydrothermal system. In support of this the highest HF contents are observed in fluid
inclusion gases in samples from the NEA (Appendix 3).

In Figure 11 A the fluids of northern and southern derivation are not distinguished on
the basis of total sulfur relative to CO,. This observation is consistent with the uniform
sulfur isotope composition of sulfides in the district and probably reflects the fact that
sulfur in the ore system was dominated by a deep sulfur source in the roots of the
upwelling plume. Notice that most of the fluids in quartz plot near the CO2 apex. In the
absence of petrographic evidence regarding the nature (boilers, necked, primary,
secondary, or pseudosecondary) of these high CO2 inclusions interpretation is not
possible. If the inclusions are primary the data imply that the deep northern recharge fluids
had high CO; during quartz deposition.

In Figure 11 B northern-derived fluids in quartz and fluorite contain abundant total
organics relative to HoO. Northern-derived waters also are characterized by greater
amounts of nitrogen, including the presence of ammonia detected in a few inclusions
(Appendix 3). The sphalerite fluids contain dominantly CHg, and lack the more complex
organic gases seen in fluids trapped in veins closer to the Creede moat sediments in the
southern part of the district. We interpret this organic speciation in the sphalerite fluids as
evidence for thermal pyrolysis of organic molecules during the northward passage of the
fluids under the district to the NEA. Organics of northern derived waters have their origins
in other sedimentary traps, possibly San Luis Peak moat sediments. The reason these
northern-derived organics survived thermal pyrolysis while those that reached the NEA
from the south did not, may be related to a much shorter residence time in the high
temperature part of the hydrothermal system. Alternatively, the organics from the north
may have entered the system at a low temperature shallow level.

Figure 11 D further emphasizes the distinction in organic gas content between fluids of
northern and southern derivation. Unlike the fluids in fluorite, adularia, and quartz, the
sphalerite fluids contain no significant total organics but are relatively rich in total sulfur
and CHy4. The NEA sphalerite fluids have lost all of their original organics in the 10
kilometer northerly traverse from Creede moat sediments, under the plume, and into the
NEA. The CH4 produced by organic maturation during travel of the fluids northward
under the district was probably very stable and very mobile in the Creede system.



Gas chemlstry of the main and late stage fluids

FIGURE 12:  8Dn20-6'80p20 of the Main and Late Stage Inclusion Fluids

The hydrogen and oxygen isotopic composition of the Creede hydrothermal fluids for
early sphalerite in the NEA and main and late stage minerals in the southern district was
determined by direct analyses of inclusion fluids (Rye et al., 1988). These data indicate
that most fluid compositions were mixtures of two fluids. One of these was a southern
recharged saline fluid with a 8D of about -50%o that was dominant during main-stage
sphalerite, galena and fluorite mineralization in the southern district. The other was a
dilute, northern recharged unexchanged meteoric water with a 8D of about -110%o with
which the hydrothermal brines interfaced or mixed during main-stage mineralization in the
southern district. The meteoric water component appears to have predominated during late-
stage pyrite mineralization. There is also a suggestion of a third fluid that appears as a 180
shifted northern recharged meteoric water component in some of the southern district
sphalerites. Numbers in the figure indicate samples representative of the major ore forming
and late stage fluids in the Creede system that were analyzed for fluid inclusion gas
chemistry.

FIGURE 13: Gas chemistry of samples used to determine the 8D 20-880120 of the
Creede fluids

The data shown on these ternary composition diagrams consists of 100 individual fluid
inclusions from chips left over after the samples were crushed and their inclusion fluids
extracted and analyzed for hydrogen and oxygen isotopic compositions. It is obvious that
the gas chemistry of the system varied considerably in time and space. The gas chemistry
of individual samples may reflect the integrated effect of different source inputs, boiling
and/or mixing processes, sulfur and organic specie disequilibrium in the system, and
degree of degradation of organic matter. Some of the processes which may be illustrated in
these ternaries are:

(A) Degassinglcondensation and mixing of fluids. Figure 13 A shows a theoretical
mixing line between water and the carbon dioxide - total sulfur binary. Much of the data
for main stage fluids cluster around this line. We know from isotope and chemical
modeling studies of Creede that mixing was the major sphalerite precipitation mechanism
(Rye et al.,1988; Plumlee et al., 1989). The data for some of the fluids could reflect
mixing. Also shown is a schemaic boiling trajectory. During boiling residual gas
compositions should 'move' away from the CO» apex curving upwards to H2O reflecting
the relative solubilities of CO, versus either HoS+SO; as gases are lost during boiling
relative to their Henry's Law constants. A family of residual gas composition curves could
be drawn similar to the one in the figure depending on the starting gas compositions. The
curved pattern produced by some of the most sulfur rich stage B-D sphalerite fluids for
several localities could be interpreted to fall on boiling trajectories. Boiling is hard to
document from fluid inclusion evidence and it is not a major precipitation mechanism at
Creede (Plumlee et al., 1988). However, some degassing of hydrothermal fluids at Creede
is indicated by the presence of the clay cap on the veins and future studies need to
document this from the gas chemistry of fluid inclusions.

(B) Source of fluids. Note the progression in fluid compositions from the water-CO;
binary towards total organics with samples from NEA to southern district and from stage C
to stage B-D in Figure 13 B. The fluids of ore depositing stage B-D are the most enriched
in organics and, given the isotope constraints, the organics in the southern part of the
district were derived in large measure from the south. The late stage E fluids that are
enriched in CO; probably represent collapse of the gas charged overlying waters into
deeper portions of the hydrothermal system (Plumlee and Rye, 1989). It is interesting that
the stage B barite fluids have lower total organics that stage B sphalerite. As indicated by
the isotope data on the barite fluids many of the barite fluid inclusions were probably
flushed by overlying waters during the collapse of the hydrothermal system.



(C) Metastable sulfur species. In Figure 13 C ore depositing fluids for stages B-D
sphalerite and stage C fluorite are enriched in H3S relative to other fluids. In this ternary,
boiling would create a trajectory down and to the right, eg. from CO3 to the H3S-SO;
binary, with a curved path to SO2. The presence of SO2, as previously discussed, reflects
the presence of metastable sulfur species in the fluids. Stage E fluids which represent
cooler, oxygenated fluids collapsing in on the system, are most enriched in SO;. Again, it
is important to recognize that with regards to sulfur, the Creede hydrothermal system was
grossly out of equilibrium (Barton et al., 1977; Rye et al., 1988).

(D) Degrees of degradation of organic matter. In Figure 13D The NEA sphalerite and
OH vein stage B-D sphalerite and stage C fluorite fluids contain high CHj relative to total
organics. This CHy probably was derived from the degradation of organic matter during
passage of fluids from south to north underneath the district. The presence of these
complex hydrocarbons in the southern district fluids has an important implications for the
hydrology of the Creede system. This implies that in contrast to the NEA sphalerite fluids,
most of the B-D sphalerite fluids in the southern district returned to the shallow level vein
system without traveling all of the way to the NEA .

Gas _chemistry of the carbonate fluids

FIGURE 14: &13C and 880 of Creede carbonates

This figure summarizes the carbon and oxygen isotope data on the vein pre-ore
wallrock calcites and vein rhodochrosites from the Bulldog Mountain veins (BMV) and C
stage siderites from the OH vein in the southern district and rhodochrosite and calcite from
the NEA. In the Southern district the wallrock calcite is the earliest recognized
hydrothermal mineral while veinlet calcite is the latest mineral in the NEA. An important
feature of the data is that except for the BMV wallrock calcite and the NEA calcite each
generation of carbonates have unique stable isotope systematics. The carbon and oxygen
isotope values of BMV wall rock calcites, BMV vein rhodochrosite and NEA vein calcites
show a reasonably good positive correlation The carbon and oxygen values for the C stage
siderites show a negative correlation. The range of data for each generation of carbonates
is too large to be due solely to temperature variations in the hydrothermal fluid. These
ranges must involve the mixing of water of different 5180 as well as mixing of carbon of
different 13C in the system. Itis also possible that some variation resulted from a
oscillation between a CO and HCO3™ dominant system. The possible carbon sources
include CO2 from the moat, CO2 from a deep seated source or volcanic rocks, organic
matter in the moat sediments and the NEA area and other shallow sources such as may have
been available to the shallow ground water. Detailed interpretation in terms of fluid history
is not possible until the paragenesis of the NEA mineralization and temperatures of
carbonate deposition are better constrained. We hope that the gas data will help sort out the
source of carbon for these different carbonates. The sample numbers indicate the samples
whose inclusions were analyzed for gas chemistry.

FIGURE 15: Gas composition of inclusion fluids from southern district carbonates

Each generation of carbonate fluids has distinct gas chemistry. Of particular interest is
the low total sulfur relative to CO?7 in the rhodochrosite fluids (Figure 15 A) the high total
organics relative to CO2 of the wall rock fluids (Figure 15 B), the high HjS relative to SO3
in the wall rock fluids (Figure 15 C), and the high SO relative to H3S and the high total
sulfur relative to total organics in the C stage siderite fluids (Figure 15 C and D). The low
sulfur content of the rhodochrosite fluids is consistent with the absence of cogenetic
sulfides and the relatively high CO2 contents are consistent with effervescence of CO2 as a
precipitation mechanism. The C stage siderite fluids have much lower total S than the
earlier C stage fluorite fluids (Figure 13A). The relatively high SO; content of the siderite
fluids may suggest that the sparse C stage siderites formed near the interface of the
hydrothermal with overlying oxidizing fluids possibly during a momentary collapse in the
hydrothermal system.
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FIGURE 16: Gas composition of inclusion fluids from NEA carbonates

The gas compositions of the inclusion fluids in NEA rhodochrosites and late calcite are
generally similar to those of the fluids in the southern district rhodochrosites and the
wallrock calcites, respectively. Both NEA and southern district carbonate fluids may have
high CHj relative to light chain hydrocarbons. This CHy probably derived from the
degradation of organic matter consistent with an extensive source of saturated
hydrocarbons in both the northern and southern part of the district. The organic matter in
the southern fluids was probably continuously degraded to CH4 during passage northward
beneath the district.

Gas chemistry of primary and secondary quartz fluids

FIGURE 17: Gas chemistry of inclusion fluids in quartz from the PMB-BY locality in the
OH vein

The fluid inclusions in quartz in from the PMB-BY locality have been the subject of
detailed study by Foley et al (1982; in press). This quartz contains both primary and
pseudosecondary inclusions which have different salinities and dDgpo values. The
primary fluids are isotopically similar to the main stage ore fluids, while the
pseudosecondary fluids compositions are more like those of meteoric water. Foley et al.
(in press) interpreted this phenomena to indicate the episodic incursion of overlying ground
water into the ore zone during the time of mineralization. The sudden incursion of cooler
water caused thermal cracking in the quartz and trapping of pseudosecondary inclusions.
We anticipated that the pseudosecondary fluids from the overlying fluids would be high in
CO; and SO, while the primaries would be typical of those previously observed in main
stage sphalerites. This figure shows the gas data of a sample containing predominantly
primary inclusions but probably also some secondaries. Unfortunately, a sample
containing predominantly pseudosecondary inclusions was lost during analyses. When the
plots in this figure are compared with those in Figure 13 for fluids in main stage sphalerite
most of the gas compositions are similar, which is to be expected since the quartz and
sphalerite formed from similar fluids. The most notable differences in gas compositions
are the high CO7 and SO; in some of the PMB BY fluids (Figure 17 A,B,C) and the high
total sulfur relative to total organics in the fluids (Figure 17 D). These compositions are
similar to those observed for the fluids in late stage minerals (See Figure 13) which formed
during the collapse of the hydrothermal system and are reasonable for overlying fluids in
the Creede system consistent with the interpretation of Foley et al. (in press) for the
formation of the pseudosecondary fluid inclusion in this sample.

Summary gas compositions of the Creede fluids

FIGURE 18: CHy -light chain -aromatic hydrocabon-gas compositions throughout the
district

When hydrocarbons undergo thermal maturity aromatic (saturated) hydrocarbons break
down through a series of light chain hydrocarbons (LCHC) to CH4. This could be the
origin of the high CHy in some samples in Figure 18. As previously mentioned (Figure
11) CHy is the only hydrocarbon detected in the NEA sphalerite fluids which isotope data
indicate were derived from the southern moat (Figure 18 A and C). Presumably the
original organic fraction was thermally decomposed during northward passage under the
district from the moat sediments. All of the other NEA fluids which isotope data indicate
were derived from northern sources have significant organic contents and the highest
aromatic to LCHC in the district. This gas chemistry implies a northern as well as southern
source of organic matter (Figure 18 C) although some of the variations in organic gas
chemistry could result from boiling as indicated by the schematic trends for residual fluids
in Figure 18 D. There are aromatic hydrocarbons in most fluids from the southernmost
part of the district and some of the stage B-D sphalerite fluids in the southern district have
high CHy4 and aromatics relative to LCHC.
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FIGURE 19: COgz-total suifur-total organic compositions throughout the district

There is a tremendous variation in the CO»-total sulfur-total organic compositions of the
Creede fluids. The NEA sphalerite and late stage pyrite fluids have high total sulfur relative
to total organics (Figure 19 A and C). All of the carbonate fluids in the district except C
stage siderites (symbols are buried near CO7 apex in Figure 19 D) have high total organic
relative to total sulfur (Figure 19 D). There was very little sulfur in the fluids during
carbonate deposition. Most carbonates at Creede probably precipitated from degassing of
COz (Plumlee et al., 1989). The trend of the gas compositions for the carbonate fluids data
does not fit the schematic curves for degassed residual fluids in Figure 19 D but looks more
like a mixing trend. We suspect the composition trend reflects the way batches of residual
fluids and condensed gases mixed during carbonate deposition. The large organic relative
to CO; in the carbonate fluids suggest that some of the variation in 813C values of the
carbonates (Figure 14) was related to the breakdown of organic matter. Both the late stage
pyrite (Figure 19 A) and the C stage siderite (Figure 19 B) fluids have very little organic
matter. Plumlee and Rye (1988) have interpreted that the late stage pyrites formed during
the collapse of the overlying low pH waters in to the veins in the waning stages of the
hydrothermal system. We suspect that the sparse C stage carbonates formed during a
momentary collapse in the system following the deposition of fluorite which was likely
related to a pulse of fluid from a magmatic source. The gas compositions for most of the
ore fluids that fall in the center of the ternaries probably reflect the combined effect of the
degassing of the hydrothermal fluids and their mixing with overlying fluids.

FIGURE 20: CO32-H3S-SO2 gas compositions throughout the district

The gas compositions in this figure emphasize the time-space variations in the CO3-
H>S-SO7 chemistry of the fluids. Shallow fluids that appear in barite fluid inclusions
(Figure 20 B) generally are CO2 and SO; dominant, consistent with flushing of the
inclusions by overlying groundwater after mineralization (Rye et al., 1988). Stage B-D ore
stage fluids have HaS as dominant sulfur specie (Figure 20 A). The E stage (Figure 20A)
and C stage (Figure 20 D; symbols are hidden near CO; apex) siderite fluids are SO
dominant relative to HpS, consistent with precipitation from low pH, gas charged overlying
groundwaters that entered the veins during the collapse of the hydrothermal system (Figure
20 B). Carbonate fluids generally are CO, dominant (Figure 20 D). It is interesting to note
that early wall rock calcite fluids are enriched in HjS relative to SO which is consistent
with the possibility that H»S was leached from the volcanics by the earliest fluids.

FIGURE 21: Summary of gas chemistry of the various fluid components in the Creede
system

By integrating all of the gas, fluid inclusion and stable isotope data on fluids in various
minerals in time and space a general summary can be constructed for the gas chemistry of
the major fluid components in the Creede system as shown in Figure 6. This summary is
highly generalized and verification and refinement is the object of detailed studies currently
in progress.

CONCLUSIONS

Although reconnaissance in nature this study has characterized the major gas chemistry
features of the Creede hydrothermal system. Gas chemistry studies can be powerful
indicators of sources and evolution of fluids. Gas chemistry data also show exceptional
promise as indicators of disequilibrium in hydrothermal systems that in turn can be useful
tracers of the hydrology of the system. However, to reach full potential the gas chemistry
studies must be combined with detailed paragenetic, fluid inclusion, and stable isotope
studies. Finally, the techniques used here illustrate the potential to make quantitative
distinctions of gas chemistry between multiple populations of fluid inclusion in a single
host mineral crystal. The gas data of samples with fluid inclusions susceptible to flushing
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by later fluids demonstrates that populations of pseudosecondary and secondary fluid
inclusions are not "yesterday's tap water” but can contain fluids present in the system
during and just subsequent to ore-forming processes and can be important to understanding
the hydrologic history of the system.

The gas chemical composition of the Creede system was highly variable in time and
space. Different fluid sources had different gas chemistries which were modified by deep
rock interaction and shallow mixing and/or boiling processes. In addition, organic matter
from different sources underwent different degrees of degradation and place important
constraints on the hydrology of the system. The existence of significant disequilibrium
amounts of SO indicate that metastable thiosulfate formed during the mixing of
hydrothermal fluids with overlying low pH waters during main stage mineralization and
especially during the collapse of the hydrothermal system.
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